IN	INDIAN SCHOOL AL WADI AL KABIR	
Class: XII $\quad \begin{aligned} & \text { Depa } \\ & \\ & \end{aligned}$	Department: SCIENCE 2022-23 SUBJECT : CHEMISTRY	Date of submission: $14.09 .2022$
PRACTICE Chap WORKSHEET	Chapter: SOLUTIONS - PART 2	Note: A4 FILE FORMAT
NAME OF THE STUDENT	CLASS \& SEC:	ROLL NO.

1. Determine the amount of $\mathrm{CaCl}_{2}(\mathrm{i}=2.47)$ dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at $27^{\circ} \mathrm{C}$.
2. Determine the osmotic pressure of a solution prepared by dissolving 25 mg of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 2 litres of water at $25^{\circ} \mathrm{C}$, assuming that it is completely dissociated
3. 2 g of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ dissolved in 25 g of benzene shows a depression in freezing point equal to 1.62 K . Molal depression constant for benzene is $4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. What is the percentage association of acid if it forms dimer in solution?
4. 0.6 mL of acetic acid $(\mathrm{CH} 3 \mathrm{COOH})$, having density $1.06 \mathrm{~g} \mathrm{~mL}^{-1}$, is dissolved in 1 litre of water. The depression in freezing point observed for this strength of acid was $0.0205^{\circ} \mathrm{C}$. Calculate the Van 't Hoff factor $. \mathrm{K}_{\mathrm{f}}=1.86 \mathrm{KKgmol}^{-1}$
5. What is the value of van't Hoff factor if solute molecules undergo dimerisation?
6. Define Van't Hoff factor
7. Calculate the freezing point of an aqueous solution containing 10.50 g of MgBr_{2} in 200 g of water. Assume complete dissociation (Molar mass of $\left.\mathrm{MgBr}_{2}=184 \mathrm{~g}\right)\left(\mathrm{K}_{\mathrm{f}}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
8. Calculate the boiling point of a solution prepared by adding 15.00 g of NaCl to 250.0 g of water. (K_{b} for water $=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Molar mass of $\mathrm{NaCl}=58.44 \mathrm{~g}$)

Q.NO	ANSWERS
1	$\begin{aligned} & w=0.75 \times 111 \times 2.5 / 2.47 \times 0.0821 \times 300 \\ & =3.42 \mathrm{~g} \end{aligned}$
2	$\begin{aligned} & \text { Now } \pi=\mathrm{icrt} \\ & =\mathrm{iW}_{2} \mathrm{X} \mathrm{RT} / \mathrm{M}_{2} \mathrm{X} \mathrm{~V} \\ & =3 \times 25 \times 10-{ }^{3} \mathrm{X} 0.082 \times 298 / 174 \times 2 \\ & =5.27 \times 10^{-3} \mathrm{~atm} . \end{aligned}$

3	$\mathrm{M}_{2}=241.98 \mathrm{~g} \mathrm{~mol}^{-1}$, Molecular mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}=122 \mathrm{~g} \mathrm{~mol}^{-1}{ }^{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \rightleftharpoons\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)_{2}$, Degree of association of benzoic acid in benzene $=99.2 \%$
4	Molality $=0.0106 \mathrm{~mol} \mathrm{~kg}^{-1}, \Delta \mathrm{~T}_{\mathrm{f}}=0.0197 \mathrm{~K}$ Van 't Hoff factor (i$)=1.041$
5	Less than unity
6	the ratio of observed colligative property to calculated colligative property.
7	$\begin{aligned} \Delta T_{f} & =i \times K_{f} \times m \\ & =\frac{3 \times 1.86 \times 10.5 \times 1000}{184 \times 200} \\ & =1.59 \\ \Delta T_{f}= & T_{f}^{o}-T_{f} \\ 1.59= & 173.15-T_{f} \\ T_{f}= & 173.15-1.59 \\ = & 271.56 \mathrm{~K} \end{aligned}$
8	$\begin{aligned} & \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \\ & i=2 \\ & \Delta T_{b}=\frac{2 \times 0.512 \times 1000 \times 15}{250 \times 58.44} \\ & =1.05 \\ & \text { Boiling point of solution }=100+1.05 \\ & =101.05^{\circ} \mathrm{C} \end{aligned}$

PREPARED BY: MS. JENESHA JOSEPH	CHECKED BY : HOD - SCIENCE

