	IND	IAN SCHOOL AL WADI AL KABIR	
Class: XII	-	ment: SCIENCE 2022 – 23 CT : CHEMISTRY	Date of submission: 14.09.2022
PRACTICE WORKSHEET	Chapte	r: SOLUTIONS – PART 2	Note: A4 FILE FORMAT
NAME OF THE STUDENT		CLASS & SEC:	ROLL NO.

- 1. Determine the amount of CaCl₂ (i = 2.47) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at 27° C.
- 2. Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K₂SO₄ in 2 litres of water at 25° C, assuming that it is completely dissociated
- 3. 2 g of benzoic acid (C₆H₅COOH) dissolved in 25 g of benzene shows a depression in freezing point equal to 1.62 K. Molal depression constant for benzene is 4.9 K kg mol⁻¹. What is the percentage association of acid if it forms dimer in solution?
- 4. 0.6 mL of acetic acid (CH3COOH), having density 1.06 g mL⁻¹, is dissolved in 1 litre of water. The depression in freezing point observed for this strength of acid was 0.0205°C. Calculate the Van 't Hoff factor . $K_f = 1.86 K K g mol^{-1}$
- 5. What is the value of van't Hoff factor if solute molecules undergo dimerisation?
- 6. Define Van't Hoff factor
- 7. Calculate the freezing point of an aqueous solution containing 10.50 g of MgBr₂ in 200 g of water. Assume complete dissociation (Molar mass of MgBr₂ = 184 g) (K_f for water = 1.86 K kg mol⁻¹)
- 8. Calculate the boiling point of a solution prepared by adding 15.00 g of NaCl to 250.0 g of water. (K_b for water = 0.512 K kg mol⁻¹, Molar mass of NaCl = 58.44 g)

Q.NO	ANSWERS	
1	$w = 0.75 \times 111 \times 2.5 / 2.47 \times 0.0821 \times 300$	
	=3.42g	
2	Now $\pi = icrt$	
	$= iW_2 X RT / M_2 X V$	
	= 3 X 25 X 10- ³ X 0.082 X 298 / 174 X 2	
	$= 5.27 \text{ X } 10^{-3} \text{ atm.}$	

3	$M_2 = 241.98 \text{ g mol}^{-1}$, Molecular mass of $C_6H_5COOH = 122 \text{ g mol}^{-1} 2C_6H_5COOH \rightleftharpoons (C_6H_5COOH)_2$,
	Degree of association of benzoic acid in benzene = 99.2%
4	Molality = 0.0106 mol kg ⁻¹ , ΔT_f = 0.0197 K Van 't Hoff factor (i) = 1.041
5	Less than unity
6	the ratio of observed colligative property to calculated colligative property.
7	$\Delta T_f = i \times K_f \times m$
	$=\frac{3 \times 1.86 \times 10.5 \times 1000}{184 \times 200}$
	= 1.59
	$\Delta T_f = T_f^o - T_f$
	$1.59 = 173.15 - T_f$
	$T_f = 173.15 - 1.59$
	= 271.56K
8	$NaCl ightarrow Na^+ + Cl^-$ i=2
	$\Delta T_b = rac{2 imes 0.512 imes 1000 imes 15}{250 imes 58.44}$
	= 1.05 Boiling point of solution = 100 + 1.05 $= 101.05^{\circ}C$

PREPARED BY: MS. JENESHA JOSEPH

CHECKED BY : HOD - SCIENCE